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Introduction

Norovirus is a leading cause of acute gastroenteritis (AGE) 
globally, estimated to cause nearly 20% of all AGE cases 
worldwide (1-4). In the developing countries, AGE leading 
to dehydration and malnutrition primarily affects young 
children (3,5,6). Human Norovirus (HuNoV) belongs 
to the genus Norovirus in the family Caliciviridae and, 
is classified into seven genogroups (GI–GVII) based on 
phylogenetic analysis of the major capsid gene (VP1). Of 

them, GI, GII, GIV may infect humans and GII genotype 
(e.g., GII.2, GII.3, GII.4 and GII.6) has ever caused AGE 
prevalence (7). Especially, GII.4 had caused four epidemics 
of AGE in history, and has been the predominant genotype 
among all HuNoV genotypes causing human infection (8,9). 
However, in recent years, GII.17 frequently emerges, and 
become one of the major genotypes causing AGE in some 
countries (10). 

HuNoV VP1 protein is closely associated with the 
infectivity and antigenicity of these strains (11,12). Many 
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previous reports showed that the HuNov VP1 gene rapidly 
evolved, resulting in a large divergence of antigenicity (13). 
Earlier findings also indicated that the rapid evolution of 
the VP1 gene of Norovirus is strongly associated with AGE 
epidemics caused by HuNoV. To better understand the 
characteristics of Norovirus GII.17 isolated globally, we 
analyzed positive and negative selective sites, similarity, and 
evolution of VP1 gene in this study.

Methods

Strains selection

The full-length sequences of GII.17 norovirus VP1 gene 
(1,623 bp) were downloaded from GenBank. Which 
included all sequences submitted as of September 14th, 
2018. A total of 449 strains were obtained. These sequences 
were aligned using MEGA7.0 software with muscle 
program. All sequences were coded according to GenBank 
accession number/location of virus isolation/the year of 
virus isolation. Due to limitation in computing capacity, 
positive and negative selection analyses could not include 
sequences with greater than 99.0% identity, the VP1 
sequences with >99.0% were excluded from this analysis. 
The identity of VP1 sequences were calculated based on 
gene distances of VP1 sequences which were analyzed using 
MEGA7.0 software. Only 38 sequences were selected to 
do dN/dS analysis and phylogenetic tree construction. The 
GenBank Assess No. are as follows: FJ537136, MF918359, 
KR154230, KU561251, KT326181, KJ156329, LC349991, 
LC148854, LC101820, KT285173, KX424647, KX171413, 
KX171415, KX171412, KX420894, KX171417, KX171418, 
KX171416, KT315673, KT315698, KT315706, KT315718, 
KU953397 ,  KU561227 ,  KU561242 ,  KU561245 , 
KU557808, KU557813, KX244854, KY069114, KX168439, 
KX168444, KY406957, KY406971, KY406974, KP902563, 
KP902565, KU557839, KU587625. The sequences of other 
GII genotype sequences were used as the reference strain. 
GenBank Assess No. are as follows: KM268102, KF306214, 
JQ622197, FJ537134, KY407196, KY406943, KY424341, 
KY424342, KY424346, KY424345, KY406940, KY457583.

Model selection analyses

The best-fit model for nucleotide substitution was used 
to compute likelihoods with jModelTest v3.7. The 
phylogenetic tree is constructed using a Bayesian Markov 
Chain Monte Carlo approach under the GTR model of 

nucleotide substitution with a proportion of invariable sites 
and substitution rate heterogeneity implemented in BEAST 
v1.8.4. The sequences were partitioned into 3-codon 
positions. The convergence of parameters was analyzed 
using Tracer v1.7.1. The effective sample size of each 
parameter calculated was above 200. The maximum clade 
credibility tree was generated with program TreeAnnotator 
using TreeAnnotator v1.8.4. 

The distance of VP1 gene of norovirus GII.17 analysis

According to MCMC phylogenetic tree, VP1  gene 
sequences of GII.17 was labeled group 1 and 2, respectively. 
The gene distance of VP1 within various clades and 
between clades were calculated using distance program with 
MEGA7.0 software. 

Selective pressure analysis

The ration of Nonsynonymous(dN) to synonymous(dS) 
substitutions at every codon were calculated online using 
Datamonkey Adaptive Evolution Server (http://www. 
datamonkey.org/). FEL, and MEME methods were used. 
The dN/dS ration was estimated under the MG94 model in 
the Datamonkey. The cut off P value was at ≤0.05.

Similarity analysis

All 38 sequence of VP1 gene were used to do similarity 
analysis using Simplot software. MF918359 was used as 
query sequences, KR154230 and KU561251 as reference 
sequences. The rest of 35 sequences were all included. 
The similarity was examined using a window size of 200 
nucleotides in length (nt) and a step size of 20 nt in the full-
length VP1 genes.

Results

Time-scale evolution of the globally collected GII.17 strains

MCMC phylogenetic tree was constructed based on the 
full-length capsid gene (shown in Figure 1). All Norovirus 
GII.17 was classified into two clades. The MCMC trees 
showed that the most recent common ancestor of GII.17 
was around 1984.6 (1926.9–1995.0). The mean evolutionary 
rate of the present human GII.17 strains was estimated to 
be 2.31×10−3 substitutions/site/year [95% highest posterior 
densities (HPDs) 9.40×10−4–3.84×10−3 substitutions/site/year]. 

http://www. datamonkey.org/
http://www. datamonkey.org/
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Genetic diversity of GII.17

The mean gene distance is 0.012 (95% CI: 0.011–0.013) 
within cluster 1, 0.018 (95% CI: 0.016–0.020) in cluster 
2, respectively. The mean gene distance is 0.040 (95% CI: 
0.036–0.044) between cluster 1 and cluster 2. About 91.5% 
sequences have over the identity of 99%.

Estimation of positive selection sites in HuNov GII.17

The selection pressures on each nucleic acid site in the 
VP1 gene of GII.17 are analyzed using adaptive evolution 
online server (http://www.datamonkey.org/). Three positive 
selection sites are found (as shown in Table 1). The mean 
dN/dS is 0.160.

Similarity analyses of the Capsid VP1 gene in the present 
GII.17 strains

Similarity analysis of VP1 gene shows that the similarity of 

Figure 1 Phylogenetic trees of the complete HuNoV GII.17 VP1 gene constructed using Bayesian MCMC method. HuNoV, human 
Norovirus. 
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Table 1 Positive selection sites on capsid gene in HuNoV GII.17 

Amino acid change FEL MEME

Asn377Asp √ √

Asp396Gly √ –

Glu, Pro, Val411Leu √ √

Mean dN/dS =0.160. Cutoff P value ≤0.05. Glu, glutamic acid; 
Pro, proline; Asn, asparagine; Asp, aspartic acid; Gly, glycine; 
Val, valine; Leu, leucine; HuNoV, human Norovirus. 
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more than 93% in shell was found in shell domain while the 
similarity of 87% to 95% was in protruding domain (shown 
in Figure 2).

Discussion

In past decades, GII.4 had been the predominant genotype 
of HuNov leading human AGE. However, in recent years, 
GII.17 emerged and gradually substituted for GII.4 in 
HuNov infections in some countries (14). In this study, 
we download global VP1 full-length sequences of GII.17 
from GenBank. Phylogenetic analysis showed that GII.17 
circulating in present has developed into two clusters. The 
gene distance between cluster 1 and cluster 2 reaches to 
0.040. Which is far less than the gene distance between 
clusters of GII.4. This suggested that the origin time of 
GII.17 is later than GII.4. Kobayashi et al. classified GII 
genotype Norovirus into three lineages (7). Of which, 
lineage 1 includes GII.1, GII.2, GII.5, GII.6, GII.10, 
GII.11, GII.12, GII.13, GII.16, GII.17, GII.18, GII.19.
GII.21, GII.22. The common ancestor of lineage 1 date 
back to around 1819 CE (95% HPDs). Among lineage 
1, the origin time of GII.17, GII.18, GII.19, GII.21, and 
GII.22 was later than other genotypes of lineage 1 about 
more than 100 years. In our study, we date GII.17 back 

to 1984.6 (1926.9–1995.0), which is accordance with the 
emergency and prevalence of GII.17 only in recently years 
(14,15). Moreover, compared with GII.4, the VP1 gene 
distance of GII.17 is much smaller than GII.4 (7). This also 
supports the diversity time is shorter than other genotypes 
of GII. We also estimated the HuNov GII.17 VP1 gene 
evolutionary rate as 2.31×10−3 substitutions/site/year, our 
observation is nearly consistent with the study by Bok et al. 
(2.3×10−3 substitutions/site/year) (9).

Our result also shows that the similarities of the shell 
domains is relatively high while that of protruding domain 
is lower. Previous studies showed that more epitopes of 
GII.17 HuNov located in protruding domain of VP1. More 
divergence in this domain may be associated with escaping 
human immunity response (16). Moreover, we found 3 
positive selection sites in protruding domain of HuNov 
GII.17. It implied that HuNov got positive selection under 
human immunity pressure in vivo, and more adaptive to 
virus replication in vivo than before.

In conclusion, the common ancestor of GII.17 diverged 
from the other genotype of GII around (1926.9–1995.0) at a 
high evolutionary rate, although evolutionary rate of GII.17 
is lower than the other genotype of GII. The protruding 
domain of GII.17 capsid gene had a higher divergence 
than the other domain of it. The existence of positive 

Figure 2 Simplot analysis of the VP1 gene sequences of representative HuNoV GII.17 strains. HuNoV, human Norovirus. 
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selection sites may increase the adaptivity of GII.17 living 
in human body, and endow it the potential of becoming the 
predominant GII in future. 
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